

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Zulassungs- und Genehmigungsstelle für Bauprodukte und Bauarten

Datum: Geschäftszeichen: 10.01.2023 I 22-1.21.8-37/22

Allgemeine bauaufsichtliche Zulassung/Allgemeine Bauartgenehmigung

Nummer:

Z-21.8-2083

Antragsteller:

EJOT SE & Co. KG Market Unit ConstructionIn der Stockwiese 35
57334 Bad Laasphe

Geltungsdauer

vom: 10. Januar 2023 bis: 10. Januar 2028

Gegenstand dieses Bescheides:

EJOT Iso-Bar für Verankerungen im Beton und Mauerwerk

Der oben genannte Regelungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen/genehmigt.

Dieser Bescheid umfasst zehn Seiten und zehn Anlagen mit insgesamt 15 Seiten.

Diese allgemeine bauaufsichtliche Zulassung/allgemeine Bauartgenehmigung ersetzt die allgemeine bauaufsichtliche Zulassung/allgemeine Bauartgenehmigung Nr. Z-21.8-2083 vom 23. April 2021. Der Gegenstand ist erstmals am 15. Januar 2018 allgemein bauaufsichtlich zugelassen worden.

Seite 2 von 10 | 10. Januar 2023

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit diesem Bescheid ist die Verwendbarkeit bzw. Anwendbarkeit des Regelungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- 2 Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Dem Verwender bzw. Anwender des Regelungsgegenstandes sind, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", Kopien dieses Bescheides zur Verfügung zu stellen. Zudem ist der Verwender bzw. Anwender des Regelungsgegenstandes darauf hinzuweisen, dass dieser Bescheid an der Verwendungs- bzw. Anwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien zur Verfügung zu stellen.
- Dieser Bescheid darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen diesem Bescheid nicht widersprechen, Übersetzungen müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- 7 Dieser Bescheid bezieht sich auf die von dem Antragsteller gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Grundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.

Seite 3 von 10 | 10. Januar 2023

II BESONDERE BESTIMMUNGEN

1 Regelungsgegenstand und Verwendungs- bzw. Anwendungsbereich

1.1 Regelungsgegenstand

Zulassungsgegenstand ist der EJOT Iso-Bar. Er besteht aus einem profilierten, glasfaserverstärkten Kunststoffstab mit dem Nenndurchmesser 20 mm, in den eine Anschlussschraube der Größe M12 werkseitig eingeschraubt ist, einer Sechskantmutter, einer Unterlegscheibe und einem Dichtelement. Anschlussschraube, Sechskantmutter und Unterlegscheibe bestehen aus nichtrostendem Stahl.

Der EJOT Iso-Bar wird auf der Untergrundseite mit einem Injektionsmörtel nach Anlage 2, Tabelle 2 im Beton oder Mauerwerk verankert. Für Verankerungen im Hohl- und Lochstein-Mauerwerk oder in Vollsteinen im Bereich einer Perforierung wird die Siebhülse gemäß Anlage 6 verwendet. Die Anwendung in Vollsteinen ohne Perforierung ist auch ohne Siebhülse möglich.

Der EJOT Iso-Bar ist durch Verbund und/oder Formschluss verankert. Die Befestigung des Anbauteils erfolgt auf der Anbauteilseite an der Anschlussschraube.

Auf der Anlage 1 ist der Anker im eingebauten Zustand dargestellt. Die Bestandteile des Befestigungssystems sind auf Anlage 2 angegeben.

Genehmigungsgegenstand ist die Planung, Bemessung und Ausführung von Verankerungen in Beton und Mauerwerk mittels EJOT Iso-Bar als Abstandsmontagesystem.

1.2 Verwendungs- bzw. Anwendungsbereich

Der EJOT Iso-Bar darf für Abstandskonstruktionen auf gedämmten Untergründen (z. B. Außenwand mit Wärmedämm-Verbundsystem) aus Beton oder Mauerwerk unter statischen und quasi-statischen Belastungen verwendet werden, sofern keine Anforderungen hinsichtlich der Feuerwiderstandsdauer an die Gesamtkonstruktion einschließlich des EJOT Iso-Bar gestellt werden.

Der Verankerungsgrund darf aus bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach DIN EN 206-1:2001-07 bestehen. Der EJOT Iso-Bar darf im gerissenen und ungerissenen Beton verankert werden. Er darf nur in trockenem Beton gesetzt werden.

Der EJOT Iso-Bar darf auch für Verankerungen in Mauerwerk nach DIN EN 1996-1-1:2013-02 in Verbindung mit DIN EN 1996-1-1/NA:2019-12 verwendet werden. Zulässige Verankerungsgründe sind:

- Vollziegel Mz nach DIN EN 771-1:2015-11 in Verbindung mit DIN 20000-401:2017-01 oder alternativ DIN 105-100:2012-01,
- Kalksandvollsteine KS nach DIN EN 771-2:2015-11 in Verbindung mit DIN 20000-402:2017-01,
- Leichtbetonvollstein V nach DIN EN 771-3:2015-11 in Verbindung mit DIN V 20000-403:2019-11 oder alternativ DIN V 18152-100:2005-10,
- Porenbetonsteine PP nach DIN EN 771-4:2015-11 in Verbindung mit DIN 20000-404:2018-04,
- Hochlochziegel Hlz nach DIN EN 771-1:2015-11 in Verbindung mit DIN 20000-401:2017-01 oder alternativ DIN 105-100:2012-01, Steingeometrie nach Anlage 9.5,
- Kalksandlochsteine KSL nach DIN EN 771-2:2015-11 in Verbindung mit DIN 20000-402:2017-01, Steingeometrie nach Anlage 9.5,
- Leichtbeton Hohlblock Hbl nach DIN EN 771-3:2015-11 in Verbindung mit DIN V 20000-403:2019-11 oder alternativ DIN V 18151-100:2005-10, Steingeometrie nach Anlage 9.5.

Seite 4 von 10 | 10. Januar 2023

Abmessungen, Steinfestigkeiten und Rohdichten der Mauersteine müssen den Angaben in Anlage 9.3, Tabelle 15 entsprechen.

Die Mörteldruckfestigkeit muss mindestens den Anforderungen an Normalmörtel der Mörtelgruppe II nach DIN EN 1996-1-1/NA:2019-12 entsprechen.

Bezogen auf die Verankerung darf der EJOT Iso-Bar in trockenem (d/d) und nassem Mauerwerk (w/w) gesetzt und verwendet werden.

Der EJOT Iso-Bar darf in den folgenden Temperaturbereichen verwendet werden:

- von -40 °C bis +40 °C (maximale Langzeittemperatur +24 °C, maximale Kurzzeittemperatur +40 °C),
- von -40 °C bis +80 °C (maximale Langzeittemperatur +50 °C, maximale Kurzzeittemperatur +80 °C).

Bezogen auf die Stahlteile an der Anbauteilseite darf der EJOT Iso-Bar entsprechend seiner Korrosionsbeständigkeitsklasse nach Abschnitt 2.1 gemäß DIN EN 1993-1-4:2015-10 in Verbindung mit DIN EN 1993-1-4/NA:2017-01 verwendet werden.

2 Bestimmungen für das Bauprodukt

2.1 Eigenschaften und Zusammensetzung

Der EJOT Iso-Bar muss in seinen Abmessungen und Werkstoffeigenschaften den Angaben der Anlagen 2 bis 4 entsprechen.

Die in dieser allgemeinen bauaufsichtlichen Zulassung nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Iso-Bars müssen den beim Deutschen Institut für Bautechnik hinterlegten Angaben entsprechen.

Die Stahlteile an der Anbauteilseite haben die Korrosionsbeständigkeitsklasse (CRC) III nach DIN EN 1993-1-4:2015-10 in Verbindung mit DIN EN 1993-1-4/NA:2017-01.

2.2 Verpackung, Lagerung, Transport und Kennzeichnung

2.2.1 Verpackung, Lagerung und Transport

Der EJOT Iso-Bar ist als Befestigungseinheit zu verpacken und zu liefern.

Bei der Lagerung und beim Transport ist auf Folgendes zu achten:

- keine Einwirkung von Stoßlasten, Hammerschlägen bzw. Schlägen mit scharfen Gegenständen,
- keine Lagerung von Gegenständen mit scharfen Kanten direkt auf dem Anker,
- kein Kontakt mit Ölen und Lösungsmitteln.
- Schutz vor Funkenflug, offenen Flammen und Hitzeeinwirkung,
- Verpackung der Stäbe vor dem Transport muss Schutz der Stäbe gegen mechanische Beschädigung durch Gabelstapler oder Hubeinrichtungen gewährleisten,
- trockene Lagerung,
- die Lagerungstemperatur muss zwischen -20 °C und +40 °C liegen,
- keine dauerhafte direkte Sonneneinstrahlung.

Die Mörtelkartuschen sind entsprechend der Angaben der jeweiligen ETA (siehe Anlage 2, Tabelle 2) und entsprechend der Montageanweisung des Herstellers zu lagern.

2.2.2 Kennzeichnung

Verpackung, Beipackzettel oder Lieferschein des EJOT Iso-Bar muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Zusätzlich ist das Werkzeichen, die Zulassungsnummer, und die vollständige Bezeichnung z.B. "EJOT Iso-Bar Set 200" anzugeben. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

Seite 5 von 10 | 10. Januar 2023

2.3 Übereinstimmungsbestätigung

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung des EJOT Iso-Bar mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einer Übereinstimmungserklärung des Herstellers auf der Grundlage einer werkseigenen Produktionskontrolle und eines Übereinstimmungszertifikates einer hierfür anerkannten Zertifizierungsstelle sowie einer regelmäßigen Fremdüberwachung durch eine anerkannte Überwachungsstelle nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller des EJOT Iso-Bar eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Übereinstimmungserklärung hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen. Die werkseigene Produktionskontrolle soll mindestens die im Prüfplan aufgeführten Maßnahmen einschließen.

Für Umfang, Art und Häufigkeit der werkseigenen Produktionskontrolle ist der beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegte Prüfplan maßgebend.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials und der Bestandteile,
- Art der Kontrolle oder Prüfung,
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials oder der Bestandteile,
- Ergebnis der Kontrolle und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen,
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die bestehende Prüfung unverzüglich zu wiederholen.

Seite 6 von 10 | 10. Januar 2023

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch einmal jährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung des EJOT Iso-Bar durchzuführen und es müssen auch Proben für Stichprobenprüfungen entnommen werden. Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

Für Umfang, Art und Häufigkeit der Fremdüberwachung ist der beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegte Prüfplan maßgebend.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für Planung, Bemessung und Ausführung

3.1 Planung und Bemessung

3.1.1 Allgemeines

Die Befestigungen mittels EJOT Iso-Bar sind ingenieurmäßig zu planen und zu bemessen. Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.

Der Nachweis der unmittelbaren örtlichen Krafteinleitung in den Verankerungsgrund ist erbracht. Die Weiterleitung der zu verankernden Lasten im Bauteil ist nachzuweisen.

Die Montagekennwerte für den EJOT Iso-Bar sind auf Anlage 5 angegeben.

Zusatzbeanspruchungen aus behinderter Formänderung (z. B. bei Temperaturwechseln) sind zu berücksichtigen.

Putze, Bekiesungs-, Bekleidungs- oder Ausgleichschichten gelten als nichttragend und dürfen bei der Verankerungstiefe nicht berücksichtigt werden.

3.1.2 Bemessung des EJOT Iso-Bar (Verankerungsgrund Beton)

Nachweis für alle Belastungsrichtungen und alle Versagensarten:

$$F_{Ek} \cdot \gamma_F = F_{Ed} \le F_{Rd} = F_{Rk} \cdot \psi_{sus} / \gamma_M$$

mit: FEk charakteristischer Wert der Einwirkung

γ_F Teilsicherheitsbeiwert der Einwirkung

F_{Ed} Bemessungswert der Einwirkung

F_{Rd} Bemessungswert der Tragfähigkeit

F_{Rk} charakteristischer Wert der Tragfähigkeit entsprechend Anlage 9.1, Tabelle 12

 ψ_{sus} Faktor, der den Einfluss einer Dauerlast auf die Verbundfestigkeit berücksichtigt, nach DIN EN 1992-4:2019-04, Abschnitt 7.2.1.6 Gleichung (7.14a) bzw. (7.14b) mit $\psi^0_{\text{sus}} = 0.6$

γ_M Material-Teilsicherheitsbeiwert entsprechend Anlage 9.1, Tabelle 12

Die Achs- und Randabstände nach Anlage 9.1, Tabelle 13 sind einzuhalten.

Seite 7 von 10 | 10. Januar 2023

3.1.3 Bemessung des EJOT Iso-Bar (Verankerungsgrund Mauerwerk)

Erforderliche Nachweise:

Bemessung Einzelanker mit Achsabstand s ≥ s_{cr}:

Zugbeanspruchung: $N_{Ek} \cdot \gamma_F = N_{Ed} \le N_{Rd} = N_{Rk} / \gamma_M$

Druckbeanspruchung: $N_{Ek} \cdot \gamma_F = N_{Ed} \le N_{Rd} = \alpha_{Druck} \cdot N_{Rk} / \gamma_M$

Querbeanspruchung: $V_{Ek} \cdot \gamma_F = V_{Ed} \le V_{Rd} = V_{Rk} / \gamma_M$

kombinierte Zug-, bzw. Druck- und Querbeanspruchung: (N_{Ed} / N_{Rd} + V_{Ed} / V_{Rd}) ≤ 1,0

Bemessung Gruppe (2 Anker) mit Achsabstand $s_{min,||} \le s_{||} < s_{cr,||}$:

Zugbeanspruchung: $N_{Ek}^g \cdot \gamma_F = N_{Ed}^g \leq N_{Rd}^g = \alpha_g \cdot N_{Rk} / \gamma_M$

Druckbeanspruchung: $N_{Ek}^g \cdot \gamma_F = N_{Ed}^g \leq N_{Rd}^g = \alpha_g \cdot \alpha_{Druck} \cdot N_{Rk} / \gamma_M$

Querbeanspruchung: $V_{Ek}^g \cdot \gamma_F = V_{Ed}^g \leq V_{Rd}^g = 1,0 \cdot V_{Rk} / \gamma_M$

kombinierte Zug-, bzw. Druck- und Querbeanspruchung: (N_{Ed}^g / N_{Rd}^g + V_{Ed}^g / V_{Rd}^g) ≤ 1,0

mit: scr charakteristischer Achsabstand entsprechend Anlage 9.3, Tabelle 16

s_{min,II} minimaler Achsabstand parallel zur Lagerfuge entsprechend Anlage 9.3, Tabelle 16

V_{Ek} charakteristischer Wert der Einwirkung in Querri

V_{Ek} charakteristischer Wert der Einwirkung in Querrichtung
N_{Ek} charakteristischer Wert der Einwirkung in Zug- bzw. Druckrichtung

γ_F Teilsicherheitsbeiwert der Einwirkung

V_{Ed} Bemessungswert der Einwirkung in Querrichtung

N_{Ed} Bemessungswert der Einwirkung in Zug- bzw. Druckrichtung

V_{Rd} Bemessungswert der Tragfähigkeit in Querrichtung

N_{Rd} Bemessungswert der Tragfähigkeit in Zug- bzw. Druckrichtung

V_{Rk} charakteristischer Wert der Tragfähigkeit entsprechend Anlage 9.2, Tabelle 14 N_{Rk} charakteristischer Wert der Tragfähigkeit entsprechend Anlage 9.2, Tabelle 14

γ_M Material-Teilsicherheitsbeiwert γ_{Mm} oder γ_{MAAC} entsprechend Anlage 9.2, Tabelle 15

α_q Gruppenfaktor nach Anlage 9.3, Tabelle 16

α_{Druck} Faktor für Druckbeanspruchung nach Anlage 9.2, Tabelle 14

Die minimalen Randabstände c_{min} nach Anlage 9.3, Tabelle 16 sind einzuhalten.

Die charakteristischen Werte der Tragfähigkeit für Vollsteine gelten auch für größere Steinabmessungen und höhere Steindruckfestigkeiten.

Für andere Steine darf die Tragfähigkeit durch Baustellenversuche nach der Technischen Regel "Durchführung und Auswertung von Versuchen am Bau"¹ unter Berücksichtigung des β-Faktors nach Anlage 9.3, Tabelle 17 ermittelt werden.

3.1.4 Berücksichtigung von Mauerwerksfugen

Die charakteristischen Werte der Tragfähigkeit N_{Rk} und V_{Rk} dürfen nur dann angesetzt werden, wenn die Fugen des Mauerwerks vollständig mit Mörtel gefüllt sind.

Wenn die Fugen des Mauerwerks nicht vollständig mit Mörtel gefüllt sind, dürfen die charakteristischen Werte der Tragfähigkeit N_{Rk} und V_{Rk} nur dann angesetzt werden, wenn der minimale Randabstand c_{min} nach Anlage 9.3, Tabelle 16 zu den Stoßfugen eingehalten ist.

Wird dieser minimale Randabstand c_{min} zu nicht vollständig vermörtelten Stoßfugen nicht eingehalten, sind die charakteristischen Werte der Tragfähigkeit N_{Rk} und V_{Rk} (parallel zur Stoßfuge) mit dem Faktor 0,75 zu multiplizieren. Bei einer Querlast senkrecht zur nicht vollständig vermörtelten Stoßfuge muss der Randabstand c_{min} zur Stoßfuge betragen.

DIBt: "Durchführung und Auswertung von Versuchen am Bau für Injektionsankersysteme im Mauerwerk mit ETA nach EAD 330076-00-0604 bzw. nach ETAG 029", 2019-09 (www.dibt.de)

Seite 8 von 10 | 10. Januar 2023

In allen Fällen muss gewährleistet sein, dass die mittlere Fugenbreite des Mauerwerks 10 mm nicht überschreitet und das Mauerwerk den Regeln nach DIN EN 1996-1-1:2013-02 in Verbindung mit DIN EN 1996-1-1/NA:2019-12, entspricht.

3.1.5 Stabilitätsnachweis

Zusätzlich ist für Druckbeanspruchung ein Stabilitätsnachweis erforderlich. Bei reiner Druckbeanspruchung (ohne gleichzeitiger Querbeanspruchung) ist folgender Nachweis zu führen:

 $N_{Ek} \cdot \gamma_F = N_{Ed} \le N_{cr} \le F_d$

 $N_{cr} = \pi \cdot (E/\gamma_{M,E}) \cdot I / (e+a)^2$

 $I_k = (e + a + 0.5 d_2) \cdot \beta$

mit: N_{Ed} Bemessungswert der Einwirkung in Druckrichtung

γ_F Teilsicherheitsbeiwert der Einwirkung

N_{cr} Bemessungswert der Knicklast

E E-Modul = 60 000 N/mm²

I Trägheitsmoment I = 7854 mm⁴

lk Knicklänge

β Knickbeiwert nach Euler

e+a Auskragung siehe Anlage 1

d₂ Nenndurchmesser nach Anlage 3, Tabelle 3

 $\gamma_{M,f}$ Teilsicherheitsbeiwert Druck $\gamma_{M,f}$ = 1,3

 $\gamma_{M,E}$ Teilsicherheitsbeiwert E-Modul $\gamma_{M,E} = 1,3$

F_d maximale Druckkraft F_d = 64 kN

Für kombinierte Druck- und Querbeanspruchung und/oder Vorverformungen des EJOT Iso-Bar (z. B. aus Imperfektionen) ist ein genauerer Nachweis nach Theorie II. Ordnung zu führen. Dabei sind die Verformungen aus Querbeanspruchung und Vorverformung am Kragarmende zu berücksichtigen.

3.1.6 Verschiebungsverhalten im Verankerungsgrund unter Zug-, Druck- und Querlasten

Für den Verankerungsgrund Beton sind die Kurzzeit-Verschiebungen des EJOT Iso-Bar unter Belastung in Höhe der charakteristischen Tragfähigkeiten für Zug-, Druck- und Querbelastung in Anlage 9.1, Tabelle 13 angegeben.

Für den Verankerungsgrund Mauerwerk sind die Kurzzeit-Verschiebungen des EJOT Iso-Bar unter Zug-, Druck- und Querbelastung in Anlage 9.2, Tabelle 14 angegeben.

Die Langzeit-Verschiebungen unter Zug- und Druckbeanspruchung betragen das 2-fache der Kurzzeitverschiebungen. Die Langzeit-Verschiebungen unter Querbeanspruchung betragen das 1,5-fache der Kurzzeitverschiebungen.

3.1.7 Quertragfähigkeit bei einer maximalen Verformung

Die Quertragfähigkeit V(w) bei einer vorgegebenen maximalen Kurzzeit-Verschiebung w des EJOT Iso-Bar ist in Anlage 9.4, Tabelle 18 für eine Einzelbefestigung mit Kragarm angegeben. Die maximalen Langzeit-Verschiebung betragen das 1,5-fache der Kurzzeitverschiebungen.

Wenn die Dichtigkeit des Ringspalts zwischen Iso-Bar und Putz nur durch das Dichtelement gemäß Anlage 2 sichergestellt wird, so ist die zulässige Verschiebung unter Querlast auf 5 mm beschränkt. Für diesen Anwendungsfall sind in Anlage 9.4, Tabelle 18 die zugehörigen zulässigen Querlasten für w = 5 mm Verschiebung angegeben.

Bei Verschiebungen > 5 mm muss der gedämmte Untergrund (z. B. das Wärmedämm-Verbundsystem) zusätzlich mit geeigneten Mitteln vor eindringendem Niederschlag geschützt werden (z. B. mit einer Blech-Abdeckung).

Die Verschiebung des EJOT Iso-Bar am Anbauteil unter Querlast darf maximal 10 mm betragen (einschließlich der Verschiebung im Verankerungsgrund).

Seite 9 von 10 | 10. Januar 2023

3.1.8 Wärmebrücken

Die Wirkung von mechanischen Befestigungselementen in der Wärmedämmebene ist bei der Ermittlung des Wärmedurchgangskoeffizienten U gemäß DIN EN ISO 6946:2018-03 zu berücksichtigen. Der korrigierte Wärmedurchgangskoeffizient U_c ergibt ausfolgender Gleichung:

 $U_c = U + \Delta U_f + \Delta U_a$

mit: U: Wärmedurchgangskoeffizienten des ungestörten Bauteils

ΔU_f: Korrekturterm für die mechanische Befestigung

 ΔU_g : Korrekturterm für Luftzwischenraum nach DIN EN ISO 6946:2018-03, Abschnitt F.2

Die Korrektur des Wärmedurchgangskoeffizienten für mechanische Befestigungsteile ergibt sich gemäß DIN EN ISO 6946:2018-03, Abschnitt F.3.1 wie folgt:

 $\Delta U_f = n_f \cdot \chi$

mit: n_f: Anzahl Befestigungselemente je m²

χ: Punktbezogener Wärmedurchgangkoeffizient nach Anlage 8, Tabellen 10 und 11

Der punktbezogene Wärmedurchgangskoeffizient χ kann auch mit einem 3-D-Modell nach DIN EN ISO 10211:2018-03 berechnet werden. Dabei ist für den glasfaserverstärkten Kunststoffstab einschließlich der Anschlussschraube die äquivalente Wärmeleitfähigkeit λ_{eq} nach Anlage 8, Tabelle 9 zu verwenden.

Ist die Gesamtkorrektur ($\Delta U_f + \Delta U_g$) jedoch geringer als 3% von U, muss keine Korrektur vorgenommen werden.

3.2 Ausführung

3.2.1 Allgemeines

Der EJOT Iso-Bar darf nur als Befestigungseinheit verwendet werden. Einzelteile dürfen nicht ausgetauscht werden.

Die Montage des zu verankernden EJOT Iso-Bar ist nach den gemäß Abschnitt 3.1 gefertigten Konstruktionszeichnungen und der Montageanleitung des Antragstellers (siehe Anlage 10) vorzunehmen.

Vor dem Setzen sind die Art des Verankerungsgrundes und die Dicke der nichttragenden Schicht festzustellen.

Für die Verankerung im jeweiligen Verankerungsgrund (Untergrundseite) sind die Bestimmungen für die Ausführung in den jeweiligen ETAs für das Injektionssystem (siehe Anlage 2, Tabelle 2) einzuhalten.

Die bauausführende Firma hat zur Bestätigung der Übereinstimmung der Bauart mit der von diesem Bescheid erfassten allgemeinen Bauartgenehmigung eine Übereinstimmungserklärung gemäß §§ 16a Abs. 5 i.V.m. 21 Abs. 2 MBO abzugeben.

3.2.2 Bohrlochherstellung

Bei bewehrtem Untergrund ist die Lage des EJOT Iso-Bar mit der Bewehrung so abzustimmen, dass ein Beschädigen der Bewehrung vermieden wird.

Das Bohrloch ist rechtwinklig zur Oberfläche des Verankerungsgrundes im Bohrverfahren entsprechend Anlage 10.1 zu erstellen. Bohrlochdurchmesser und Bohrlochtiefe nach Anlage 5, Tabelle 5 und Tabelle 6 sind einzuhalten.

Vor dem Setzen des EJOT Iso-Bar bzw. der Siebhülse ist das Bohrloch gemäß Anlage 10 zu reinigen.

Seite 10 von 10 | 10. Januar 2023

Bei Fehlbohrungen ist ein neues Bohrloch im Abstand von mindestens 1 x Tiefe der Fehlbohrung anzuordnen, wobei als Größtabstand 5 x Bohrlochdurchmesser genügt. Toleranzen des Verankerungsgrundes sind so auszugleichen, dass beim Montieren des EJOT Iso-Bar durch Mehrfachbefestigung keine ungewollten Beanspruchungen entstehen.

3.2.3 Montage des EJOT Iso-Bar

Das Setzen des EJOT Iso-Bar erfolgt nach der auf Anlage 10 dargestellten Montageanleitung. Die Montageanleitung der jeweiligen ETA für das Injektionssystem (siehe Anlage 2, Tabelle 2) einschließlich der dort angegebenen Temperaurbereiche, Aushärtezeiten und Verarbeitungszeiten sind zu beachten.

Die erforderliche Mörtelmenge ist in Anlage 7, Tabelle 8 angegeben.

Das Anzugsdrehmoment T_{Inst} für die Montage des Anbauteiles darf für Beton und Vollsteine maximal 5 Nm und für Lochsteine maximal 2 Nm betragen. Nach dem Anziehen der Sechskantmutter darf sich das Anbauteil nicht auf dem Untergrund abstützen.

3.2.4 Kontrolle der Ausführung

Bei der Herstellung von Verankerungen muss der mit der Verankerung betraute Unternehmer oder der von ihm beauftragte Bauleiter oder ein fachkundiger Vertreter des Bauleiters auf der Baustelle anwesend sein. Er hat für die ordnungsgemäße Ausführung der Arbeiten zu sorgen.

Während der Herstellung der Verankerung sind Aufzeichnungen über den Nachweis des Verankerungsgrundes (Beton, Mauerwerksart, Festigkeitsklasse und Mörtelgruppe), der Temperatur im Verankerungsgrund und die ordnungsgemäße Montage vom Bauleiter oder seinem Vertreter zu führen. Die Aufzeichnungen müssen während der Bauzeit auf der Baustelle bereitliegen und sind den mit der Bauüberwachung Beauftragten auf Verlangen vorzulegen. Sie sind ebenso wie die Lieferscheine nach Abschluss der Arbeiten mindestens 5 Jahre vom Unternehmer aufzubewahren.

Beatrix Wittstock Beglaubigt Referatsleiterin Stiller

Anwendungsbereich:

Thermisch entkoppeltes Abstand-Befestigungssystem für die Montage von Anbauteilen auf gedämmten Untergründen aus Beton und Mauerwerk

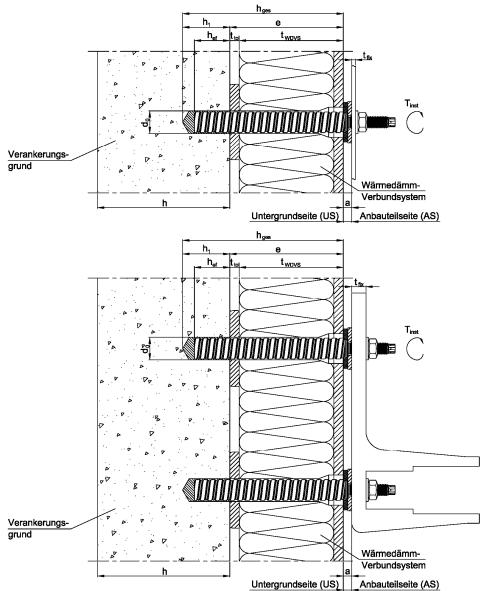
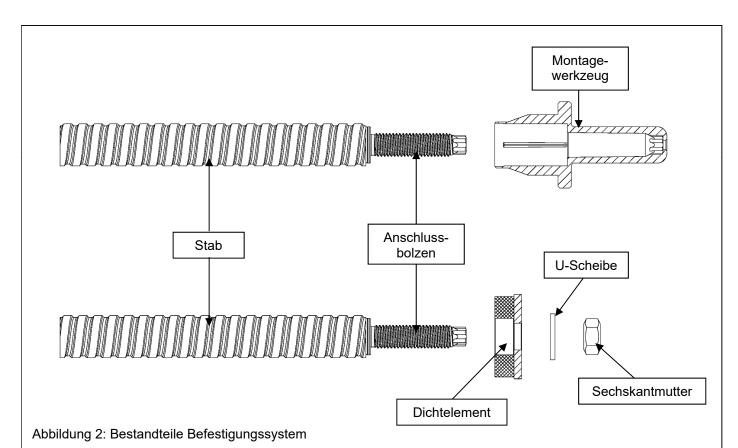



Abbildung 1: Beispiele Einbauzustand

Tabel	Tabelle 1: Legende			
h	Dicke Bauteil (tragender Untergrund)	а	Abstand WDVS – Anbauteil (5 mm)	
h _{ef}	Effektive Verankerungstiefe	е	Dicke der nichttragenden Schicht (twovs + ttol)	
h ₁	Tiefe des Bohrlochs im Untergrund	t tol	Dicke Altputz / Kleber WDVS	
hges	Gesamttiefe Bohrloch	twovs	Dicke WDVS System inkl. Oberbeschichtung	
d_0	Bohrernenndurchmesser	T _{inst}	Montagemoment Anbauteil	

EJOT Iso-Bar für Verankerungen im Beton und Mauerwerk	
Anwendungsbereich / Einbauzustand	Anlage 1

Tabelle 2: Werkstoffe		
Bezeichnung Werkstoff		
Stab	Glasfaserverbundwerkstoff nach Zulassung Z-1.6-238 vom 08.07.2019	
Anschlussbolzen M12	Edelstahl A4 316 L nach ASTM A 493:2016 Rm ≥ 640 N/mm²	
Dichtelement	Unterlegscheibe: R 13,5 Edelstahl A4 DIN 440:2001-03 Dichtring: geschlossenzelliges EPDM beige	
Unterlegscheibe A 13,0	Edelstahl A4 gemäß DIN EN ISO 7090:2000-11	
Sechskantmutter M 12	Edelstahl A4 gemäß DIN EN ISO 4032:2013-04	
Montagewerkzeug	Polyamid, glasfaserverstärkt	
Verbundankermörtel	EJOT Verbundankermörtel: ETA-16/0107 – EJOT USF für die Verankerung im Beton vom 27.01.2021 ETA-16/0089 – EJOT USF für die Verankerung im Mauerwerk 24.11.2016	

EJOT Iso-Bar	
Bestandteile / Werkstoffe	Anlage 2

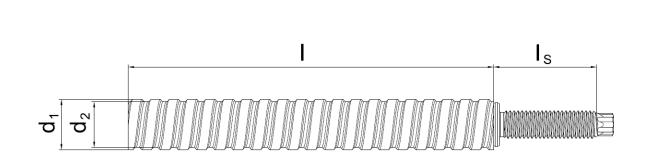


Abbildung 3: Stab mit Anschlussschraube

Tabelle 3: Abmessungen Stab mit Anschlussschraube			
d ₁	[mm]	22	
d ₂	[mm]	20	
I	[mm]	200, 260, 320 und 380 mm ¹⁾	
ls	[mm]	40,5	

¹⁾ Entspricht den Lieferlängen. Ablängen auf die erforderliche Länge gemäß Anlage 7

EJOT Iso-Bar	
Stab mit Anschlussschraube - Abmessungen	Anlage 3

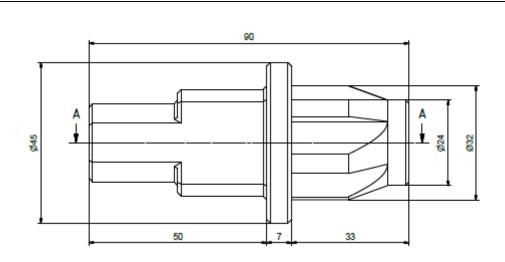


Abbildung 4: Montagewerkzeug - Ansicht

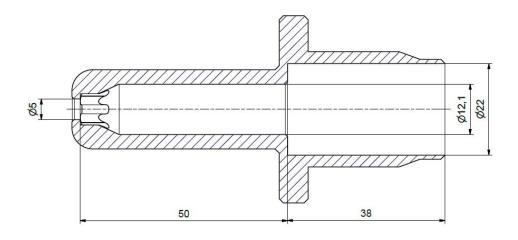


Abbildung 5: Montagewerkzeug - Schnitt A-A

Alle Maße in mm

EJOT Iso-Bar	
Montagewerkzeug - Abmessungen	Anlage 4

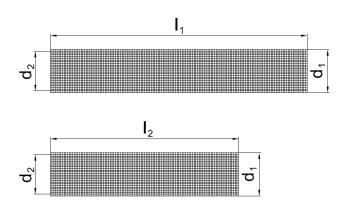
Tabelle 4: Montagewerte Befestigung Anbauteil			
Anschlussgewinde	M x I [mm]	M 12 x 35	
Klemmdicke Anbauteil	t _{fix} [mm]	≤ 25mm	
Durchgangsbohrung Anbauteil	D [mm]	≥ 13mm	
Anzugsdrehmoment	T _{inst} [Nm]	≤ 5 Nm (Beton und Vollsteine) ≤ 2 Nm (Lochsteine)	

Tabelle 5: Montagewerte für die Verankerung im Beton (gerissen und ungerissen)			
Bohrlochdurchmesser	d₀ [mm]	24	
Minimale Verankerungstiefe	h _{ef,min} [mm]	40	
Maximale Verankerungstiefe	h _{ef,max} [mm]	160	
Bohrlochtiefe	h₁ [mm]	h _{ef} +10	
Minimaler Achsabstand	s _{min} [mm]	100	
Minimaler Randabstand	c _{min} [mm]	100	
Minimale Bauteildicke	h _{min} [mm]	h _{ef} + 2 d ₀ ≥ 100	

Tabelle 6: Montagewerte für die Verankerung im Mauerwerk			
Bohrlochdurchmesser	d₀ [mm]	24 Vollbaustoff ohne Siebhülse 26 Voll- und Lochbaustoff mit Siebhülse	
Siebhülse	SH 25	SH 25 gemäß Anlage 6 ¹)	
Minimale Verankerungstiefe	h _{ef,min} [mm]	80 (100 bei Porenbeton)	
Bohrlochtiefe	h₁ [mm]	h _{ef} +20	
Minimaler Achsabstand	s _{min} [mm]	Sigha Tahalla 16 Anlaga 0.2	
Minimaler Randabstand	c _{min} [mm]	Siehe Tabelle 16, Anlage 9.3	
Minimale Bauteildicke	h _{min} [mm]	Steinbreite siehe Tabelle 16	

¹⁾ Verwendung Siebhülse bei Lochsteinmauerwerk

EJOT Iso-Bar	
Montagewerte	Anlage 5



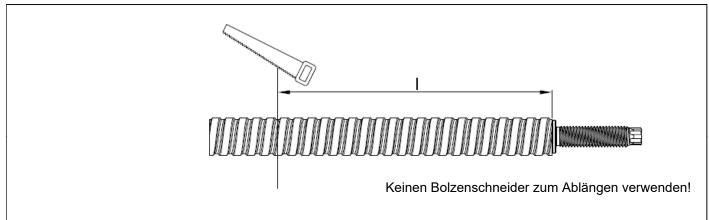

Abbildung 6: Siebhülse SH 25 werkseitig einseitig geschlossen und offene Variante

Tabelle 7: Abmessungen Siebhülse SH 25			
Werkstoff		Stahl, galvanisch verzinkt	
Länge beidseitig offen *)	I ₁ [mm]	150	
Länge werkseitig einseitig geschlossen	l ₂ [mm]	100 ± 0,8	
Durchmesser, außen	d₁ [mm]	max. 25	
Durchmesser, innen	d ₂ [mm]	23,5 ± 0,8	
Maschenweite	M [mm]	1	
Drahtdurchmesser	D [mm]	0,35	

*) Die beidseitig offene Variante muss vor der Montage einseitig mit Hilfe einer Zange verschlossen werden. Nach dem Verschließen muss mindestens die Gesamtlänge der einseitig geschlossenen Variante erreicht werden

EJOT Iso-Bar	
Siebhülse SH 25 – Werkstoff und Abmessungen	Anlage 6

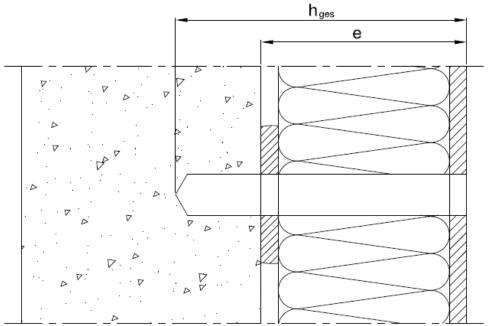


Abbildung 7: Ermittlung erforderliche Gesamtlänge

Tabelle 8: Ermittlung der Gesamtlänge I und der Gesamtbohrtiefe h _{ges}							
Untergrund	Siebhülse	Länge I	Bohrlochtiefe h _{ges}	Mörtelmenge ²⁾			
Beton	Ohne	e + h _{ef} 1)	e + h _{ef} + 10	15 ml			
Vollstein Mauerwerk	Ohne	e + h _{ef} 1)	e + h _{ef} + 20	30 ml			
Voll- und Lochstein Mauerwerk	SH 25	e + h _{ef} ¹⁾	e + h _{ef} + 20	45 ml			

¹⁾ siehe Tabellen 5 und 6, Anlage 5

²⁾ Für tiefer ausgeführte Bohrlöcher (h > hef) muss je 10mm zusätzlicher Bohrtiefe ein Mehrbedarf von 5 ml eingeplant werden.

EJOT Iso-Bar	
Ermittlung der erforderlichen Gesamtlänge	Anlage 7

Tabelle 9: Äquivalente Wärmeleitfähigkeit (Combar + Anschlussschraube) λ_{eq}									
Dämmstärke [mm]	100 150 200 250 300								
	$\lambda_{eq,100}$	$\lambda_{eq,150}$	$\lambda_{\rm eq,200}$	$\lambda_{\rm eq,250}$	λ _{eq} ,300				
	[W/(m · K)]	$[W/(m \cdot K)]$	[W/(m · K)]	[W/(m · K)]	[W/(m · K)]				
	1,1	1,0	1,0	0,9	0,9				

Tabelle 10: Punktbezogener Wärmedurchgangskoeffizient χ Dämmstoff Wärmeleitfähigkeitsgruppe 0,020 W/mK bis 0,025 W/mK									
Dämmstärke [mm]	rke 100 150 200 250 300								
	χ,100	χ,150	χ,200	χ,250	χ,300				
	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]				
	0,0018	0,0013	0,0011	0,0009	0,0008				

Tabelle 11: Punktbezogener Wärmedurchgangskoeffizient χ Dämmstoff Wärmeleitfähigkeitsgruppe 0,030 W/mK bis 0,040 W/mK									
Dämmstärke [mm]	100 150 200 250 300								
	χ,100	χ,150	χ,200	χ,250	χ,300				
	[W/K]	[W/K]	[W/K]	[W/K]	[W/K]				
	0,0017	0,0012	0,0010	0,0009	0,0007				

EJOT Iso-Bar	
Wärmebrückenwirkung	Anlage 8

Tabelle 12: Charakteristische Tragfähigkeit für alle Belastungsrichtungen und Versagensarten						
1	F _{Rk}	γм				
[kN] [kN]		[-]				
24°C/40°C 50°C/80°C						
6,0	5,5	1,8				

Tabelle 13: Charakteristische Verschiebungen, Rand- / Achsabstand und Bauteildicke						
$\begin{array}{ccc} \text{Charakteristische} & \text{Rand- / Achsabstände} \\ \text{Verschiebung} & \delta & \text{Bauteildicke} \\ \text{bei Belastung } F_{\text{Rk}} & & \text{Bauteildicke} \end{array}$						
[mm]	[mm]	[mm] [mm] [mm]				
24°C/40°C	50°C/80°C	C _{min}	S _{min}	h _{min}		
1,3	0,88	100	100	Siehe Anlage 5		

EJOT Iso-Bar	
Tragfähigkeit im Untergrund Beton C20/25 bis C50/60, Verschiebungen	Anlage 9.1

Tabelle 14: Charakteristische Tragfähigkeiten / Verschiebungen									
Stein	Abmessungen	Druck- festigkeit	Roh- dichte	N Rk Zug	N Rk Zug	αDruck	V_{Rk}	V_{Rk}	δο
[-]	[mm]	[N/mm²]	[kg/m³]	[kN]	[kN]	[-]	[kN]	[kN]	[mm]
	lxbxh			d/d	w/w		d/d	w/w	
Vollziegel Mz	234x115x110	12	1,9	2,2	1,4	1,0	0,5	0,3	2,86
Kalksand- vollstein KS	250x250x240	12	1,8	3,1	2,5	1,0	1,3	1,0	6,69
Leichtbeton- vollstein V	247x365x249	2	0,65	1,2	1,2	1,0	1,2	1,2	1,8
Hohlblock Leichtbeton Hbl ¹⁾	247x365x249	2	0,5	0,8	0,8	1,0	1,2	1,2	3,92
Kalksand- lochstein KSL ¹⁾	240x175x113	12	1,5	1,9	1,5	0,4	1,3	1,0	4,16
Hochloch- ziegel I Hlz ¹⁾	240x115x113	12	0,9	1,9	1,2	0,2	0,5	0,3	1,41
Hochloch- ziegel II Hlz ¹⁾	370x240x249	24	1,07	3,2	2,0	0,7	0,5	0,3	4,17
Porenbeton PP	599/240/249	4	0,5	3,3	2,6	1,0	0,7	0,4	0,6

¹⁾ Geometrie der Lochsteine siehe Anlage 9.5

Die charakteristischen Werte der Tragfähigkeit für Vollsteine gelten auch für größere Steinabmessungen und höhere Steindruckfestigkeiten.

Für andere Steine darf die Tragfähigkeit durch Baustellenversuche nach der Technischen Regel "Durchführung und Auswertung von Versuchen am Bau" 2 unter Berücksichtigung des β -Faktors nach Anlage 9.3, Tabelle 17 ermittelt werden.

DIBt: "Durchführung und Auswertung von Versuchen am Bau für Injektionsankersysteme im Mauerwerk mit ETA nach EAD 330076-00-0604 bzw. nach ETAG 029 ", 2019-09 (www.dibt.de)

Tabelle 15: Teilsicherheitsbeiwert (gemäß ETAG 029, Annex C oder TR 054)					
Versagen Mauerwerk u./o. Verbund γ _{Mm} 2,5					
Porenbeton	ү маас	2,0			

EJOT Iso-Bar	
Tragfähigkeit im Untergrund Mauerwerk	Anlage 9.2

Tabelle 16: A	1					I
Stein	Abmessungen	Randabstand _{Cmin}	Achsabstand s _{min,II} für Zug+Druck	Achsabstand S _{cr} , _{II}	Achsabstand $s_{min,\perp} = s_{cr,\perp}$	Grupper faktor α _g
[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[-]
	lxbxh					
Vollziegel Mz	234x115x110	60 (c _{min} Gruppe = 90)	80	235	110	2,0
Kalksand- vollstein KS	250x250x240	125	80	250	240	2,0
Leichtbeton- vollstein V	247x365x249	120	80	250	250	1,8
Hohlblock Leichtbeton Hbl	247x365x249	120	130	250	250	2,0
Kalksand- lochstein KSL	240x175x113	90	130	240	113	1,5
Hochloch- Ziegel I Hlz	240x115x113	60 (c _{min} Gruppe = 80)	130	240	113	1,1
Hochloch- Ziegel II Hlz	370x240x249	185	370	370	250	2,0
Porenbeton PP4	599x240x249	50 ¹⁾	80	300	300	1,0

bei Querbelastung mit Hebelarm senkrecht zum freien Rand ist $c_{min} = c_{cr} = 1.5 \cdot h_{ef} = 150 \text{ mm}$

Tabelle 17: β-Faktoren für Baustellenversuche		
Bohrloch trocken für V, Mz, Hlz, Hbl	β (d/d)	0,56
Bohrloch trocken für KS, KSL	β (d/d)	0,38
Bohrloch trocken für PP	β (d/d)	0,60
Bohrloch nass für V, Hbl	$\beta_{(w/d)/(w/w)}$	0,50
Bohrloch nass für Mz, Hlz	$\beta_{(w/d)/(w/w)}$	0,36
Bohrloch nass für KS, KSL	$\beta_{(w/d)/(w/w)}$	0,33
Bohrloch nass für PP	β _{(w/d) / (w/w)}	0,35

EJOT Iso-Bar	
Rand- und Achsabstände, Gruppen- und β-Faktoren	Anlage 9.3

Die Quertragfähigkeit für eine vorgesehene Verschiebung w kann wie folgt berechnet werden:

$$V_{(W)} = \frac{3EI \cdot w}{1^3}$$

E-Modul: E = 60.000 N/mm² Trägheitsmoment: I = 7.854 mm⁴

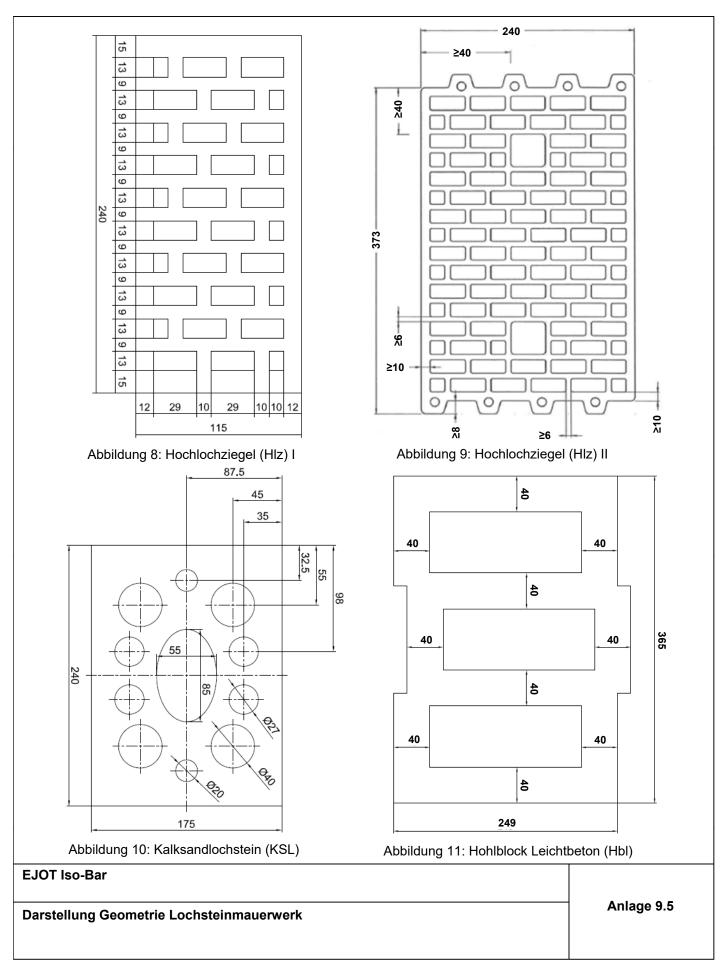
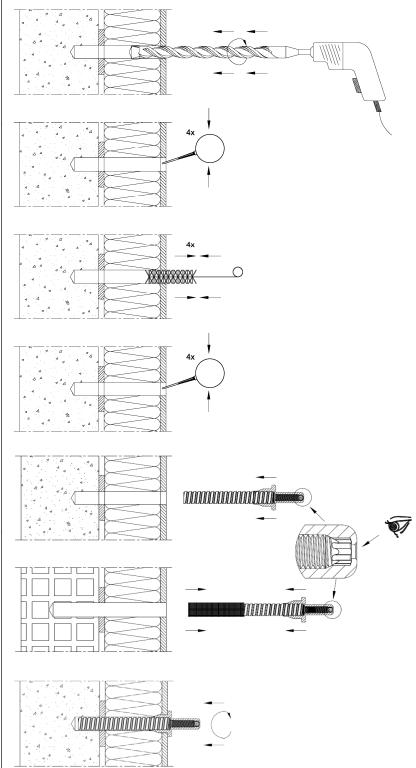

Hebelarm: I = e + a + 10 mm, mit e und a gemäß siehe Anlage 1

Tabelle 18: Quertragfähigkeit V (w) bei einer Verformung w von 1, 3 und 5 mm			
Länge des Kragarms I	Charakteristische Tragfähigkeit V (w) ¹⁾ [kN]		
[mm]	w = 1mm	w = 3mm	w = 5mm
60	4,12	12,36	20,61
80	1,94	5,82	9,70
100	1,06	3,19	5,31
120	0,64	1,93	3,22
140	0,42	1,26	2,09
160	0,29	0,86	1,44
180	0,21	0,62	1,03
200	0,15	0,46	0,76
220	0,12	0,35	0,58
240	0,09	0,27	0,45
260	0,07	0,22	0,36
280	0,06	0,17	0,29
300	0,05	0,14	0,24


¹⁾ F_{Rk} bzw. V_{Rk} im Grenzzustand der Tragfähigkeit beachten (vgl. Anlage 9.1 / 9.2)

EJOT Iso-Bar	
Quertragfähigkeit bei vorgegebener Verformung Grenzzustand der Gebrauchstauglichkeit (GZG)	Anlage 9.4

Bohrloch erstellen

Montagekennwerte siehe Anlage 5 / Montageanweisung ETA Verbundanker entsprechend Anlage 2 beachten

Vorbohren (Zentrierbohrung) mit Ø 10 oder Ø 12mm erforderlich!

Beton, KS, KSL und PP: Hammerbohren Mz, Hlz, V, Hbl: nur im Drehgang bohren!

Bohrloch reinigen

4 x Ausblasen

4 x Ausbürsten

Bürstendurchmesser d_B in Abhängigkeit des Bohrlochdurchmessers d_0 beachten: Vollbaustoffe ohne Siebhülse $(d_0=24\text{mm})$: $d_B=26\text{mm}$

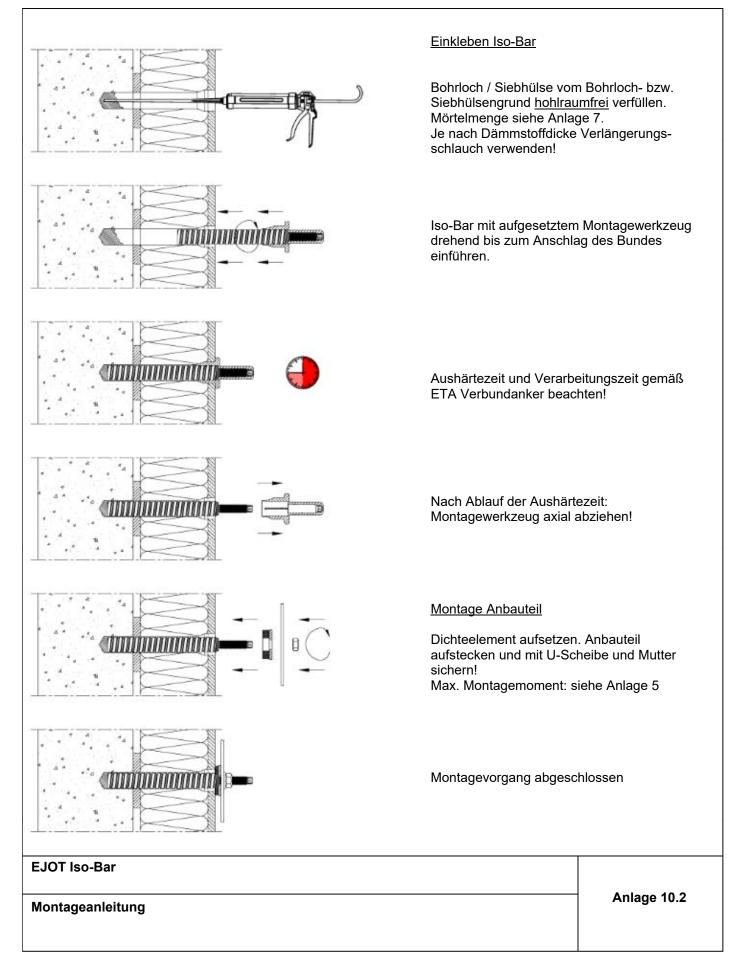
Voll- und Lochbaustoffe mit Siebhülse (d₀=26mm): d_B = 28mm

4 x Ausblasen

Aufweitung Putzschale

Montagewerkzeug gemäß Anlage 4 bis zum Anschlag auf den abgelängten Iso-Bar (vgl. Anlage 7) aufschieben.

Kontrolle der Position über hinterseitige Öffnung (siehe Detaildarstellung).


Bei Lochbaustoffen und Hohlräumen in Vollmaterial zusätzlich Siebhülse gemäß Anlage 6 auf das Ende des Stabes aufsetzen

Iso-Bar bis zur Auflage des Bundes des Montagewerkzeuges drehend in Bohrloch einführen. Bei harten / dicken Putzbeschichtungen z.B. Gabelschlüssel (SW 19) verwenden!

Iso-Bar vorsichtig aus Bohrloch herausziehen, damit die Position der Siebhülse unverändert bleibt.

EJOT Iso-Bar	
Montageanleitung	Anlage 10.1

